Introduction – Basic Loads

Recording load and position data on sucker rod lifted wells with a dynamometer transducer has been performed in the oil field for many years.

Early Dynamometer Examples:

- 1950's the popular Johnson-Fagg dynamometer.
- Leutert dynamometer .

Current portable dynamometer technology :
 – High performance digital data acquisition systems
 – Quick, accurate data, safe and easy to use .

Southwestern Petroleum Short Course, Lubbock TX, 21-22 April 2004

What is Force or Load?

- 1. Weight of the rods in fluid, Wrf, is a force.
- 2. Rods have weight due to gravity.
- 3. Rod Load is the amount of force that the Earth gravity exerts on the rod's mass.
- **4. Gravity** pulls the rods down toward the center of the Earth.

When you step on a **bathroom scale**, you exert a force on the scale. The force you apply to the scale compresses a spring, which moves the needle.

Dynamometers are used to determine the Rod Load, PRL, during a Stroke?

Popular 1950's Portable Dynamometer

Disadvantages:

1) Recorded position was distorted

2) Installation of this dynamometer between the polished rod clamp and carrier bar was difficult and time consuming

Polished Rod Load Compressed Steel Rings

Popular 1950's Portable Dynamometer

- 1. Integral Hydraulic pump extends two pistons supporting the load using hydraulic pressure
- 2. Calibrated springs in the registration unit convert the hydraulic pressure into load
- 3. String attached to the wellhead turns the registration unit in proportion to the polished rod position

Inaccurate load measurement of up to 40% is a documented problem when using the Leutert

Example Leutert Dynamometer Card

Instrumento: No. O	Fill HEADTH F	- retailed Roll	Paro 189229
		Hora D	BuaughUTK
		PK	94 94
La Contra data			TrestHuman 3.X3
No per a serie			HEATO BECKS TUSH
	151500 C		Amp. 5y8
the second	m m	A Land	meco-601BS
			Casing- AlaLmea
教力と見ています。		a constant of the state of the	L Cartada

- 1. Scribed load and position onto the wax dynamometer card for each stroke
- 2. Disadvantage of wax dynamometer card systems is that the load and position traces have to be tediously digitized by hand, before any detailed analysis can be performed

Use Any of these Dynamometer Transducers to Perform a Dynamometer Survey

Dynamometer Card Definition

Load(K-Lbs) vs Position (in)

Surface dynamometer is the plot of the card measured rod loads at various positions the complete throughout a stroke; the load is usually pounds displayed in Of force and the position İS usually displayed in inches.

2) Pump dynamometer card is a plot of the calculated loads at various positions of pump stroke and represents the fluid load the pump applies to the bottom of the rod string.

1986 Glen Albert Developed an Electronic Downhole Dynamometer – Used by SANDIA

-SizeI	Descriptior	J		-Length	E	laNuml	berCu	m.De	pth	
1.5" 1	Polished Ro	od		30	•	1		0 "		
1.0" 2	API Grade '	יםי צי	teel	4	•	1		4 '		
1.0" 2	API Grade '	יםי צי	teel	2	•	1		б '		
1.0" 2	API Grade '	יםי צי	teel	6	1	1	1	.0 "		
1.0" 2	API Grade '	יםי צי	teel	25	.	б0	151	.0 "		
]	DHLC Tool #	‡5		2		1	151	.2 '		
0.875" 2	API Grade '	יםי S	teel	25	j 🛛	64	311	.2 '		
1	DHLC Tool #	#4		2		1	311	.4 '		
0.75" 2	API Grade '	יםי צי	teel	25	; u	65	473	39 '		
1	DHLC Tool #	#3		2		1	474	1.		
1.5" 8	Sinkerbars			25	U	10	499	11		
1	DHLC Tool #	‡2		2		1	499	3 '		
]	Flexbar Sta	abili	zer	4	U	1	499)7 '		
	2″ Pump			24			506	50 '		

Well Depth: 5278' w/ Casing of 5.5" to 5090' Tubing: 2.875" to 5060', seating nipple - 5060' , tubing anchor - 4970'

1936 W.E. Gilbert of Shell developed a mechanical downhole dynamometer

SANDIA Downhole Dynamometer

Acquire Load & Acceleration Versus Time

Identify individual strokes and process acceleration data to get velocity and position

Acceleration

Integrate once

Integrate again

Load

TWM: User Help Level

- Show additional WARNINGS when performing critical function confirmation when deleting Well Files.
- Show hints when cursor is placed over data input prompts. H required data for the given entry.
- Show hints when cursor is placed over Application Controls. activate specific functions.
- Allow torgue analysis when taking measurements with a PRT
- Show advanced analysis sections throughout application. Ac the experienced user.
- Show dialog when screen size or color is not optimal for TWM.
- Show Data Guide Tab
- TWM Modules
- Acoustic (Single Shot)
- Dynamometer (Surface Card, Travleing Valve, Counter Balanc 1
- Power/Current Measurement **V**
- Liquid Level Tracking
- Pressure Transient Test 4
- General Data Acquisition
- Plunger Lift

Program Diagnostic (Debug Log)

Enable Debug Logging to Trace File

Log Level (e.g., 0 -- 5): 0

Advanced Dynamometer Analysis Parameters

These parameters determine how the strokes are processed within the Dynamometer Analysis.

the Martin J. Hills and the Condition of the Astronomy M.

Stroke Processing Method Histogram With fixed interval. [Default] Classic Method, simple crossing detection. Histogram with fixed interval. [Default] Current Classic Method, simple crossing detection. Histogram with fixed interval. [Default] Current Classic Method, simple crossing detection. Histogram with fixed interval. [Default] Current Classic Method, simple crossing detection. Histogram with fixed interval. [Default] Current Classic Method, simple crossing detection. Histogram with fixed interval. [Default] Current Classic Method, simple crossing detection. Histogram with fixed interval. [Default] Current Classic Method, simple crossing detection. Histogram with fixed interval. [Default] Current Classic Method, simple crossing detection. Histogram with fixed interval. [Default] Current Classic Method, simple crossing detection. Histogram with fixed interval. [Default] Current Classic Method, simple crossing detection. Histogram with fixed interval. [Default] Current Classic Method, simple crossing detection. Histogram with fixed interval. [Default] Current Classic Method, simple crossing detection. Histogram with fixed interval. [Default] Current Classic Method, simple crossing detection. Histogram with fixed interval. [Default] Current Classic Method content c					
RESET to Default	OK Cancel				
e) 2 Advanced Stro	ke Processing Method				
IWM - *: * Mode Option Tools Help Acquire Mode Fi Contents Image: Contents Becall Mode About TWM Image: Created On: Image: Created On:	Try Filter Widths: 0.5, 1.0, or 4.111				

Classic Stroke Processing Method

One Stroke of Polished Rod Acceleration Integrated to Determine Polished Rod Velocity

Polished Rod Velocity Integrated to Determine Polished Rod Position

Stroke Length 100.255" Calculated from Integration of Accelerometer Data

File Mgmt	General Data Guide	Surface Equip	p. Wellbore 🖊 Conditions Press. Transient Data
- [Alt- <u>1]</u> Surface L Manufacturer	Jnit LUFKIN	_	For Net Torque Calculations Use:
Unit Class	Conventional	•	11.062 Kib
API	C-320D-256-100	-	Counter Balance Moment (Existing)
Stroke Length	90 💌 in		500.901 Kin-Ib Counter Weights
Rotation	⊙ cw ⊙ ccw		Weight Of Counter Weights 5308 Ib

Leave the Stroke Length Blank and Stroke Length for Unit Calculated

Warning Displayed If ERROR > 10% Between Well File and Calculated Stroke Length

3 Choices?

Surface Unit Not Selected and StrokeLength Left BlankLeft Stroke Blank so
TWM Would Calculate

Hard Tag Near Bottom of Stroke Results in TWM Calculated Surface Stroke of 4.1"

What is Wrong with My Well?

Sucker Rod Loads

Understanding six(6) basic loads are critical to analyzing the sucker rod pumping cycle:

- Zero Load [0],
- Peak Polished Rod Load [PPRL],
- Minimum Polished Rod Load [MPRL],
- Counterbalance Effect [CBE],
- Standing Valve Load [SV], and the
- Traveling Valve Load [TV].

PPRL Peak Polished Rod Load experienced during a stroke. Wrf + Fo Max (TV) Weight of Rods in Fluid plus the fluid load applied to the rods by the pump <u>CBE</u> load at the polished rod due to the effect of the cranks and weights when horizontal. Wrf (SV) Weight of Rods in Fluid, TV open and plunger is applying no load to the rods. MPRL Minimum Polished Rod Load experienced during the pumping cycle.

LOAD RANGE (PPRL – MPRL) used in calculating % rod loading based on max and min sucker rod stresses and API Modified Goodman Guide

Zero Load Line

- 1) The zero load is the starting point.
- 2) Set the Zero offset during calibration process for no-load conditions on the load cell.

Peak Polished Rod Load, [PPRL]

Peak polished rod load is the maximum load experienced during the pumping cycle.

Minimum Polished Rod Load, MPRL

Minimum polished rod load is the minimum load experienced during the pumping cycle.

Measured and Computed Valve Loads

Standing Valve Load Line

SV Test Measures:

> Weight of the Rods Buoyed in Fluid (Wrf)

Traveling Valve Load Line

TV Test Measures:

> Weight of the Rods Buoyed in Fluid (Wrf)

plus

Fluid Load (Fo)

 $TV = W_{ra} - W_{ra} * 0.128 * SG_{tbg} + \Delta P * A_p$

Counterbalance Effect Load Line

Counterbalance Effect Line (CBE):

Weight at the polished rod that balances the counterweights on the upstroke with cranks level.

POLISHED ROD TRANSDUCER ACCELEROMETER FOR POSITION

FAST, CONVENIENT, REASONABLY ACCURATE LOAD AND POSITION DATA.

Min. Pump Card Load Sets on Zero Load Line

144.0 Load (K-Lbs) vs Plunger Pos. (in) 130.9

Load Shifted by Tag

CORRECTED

30k HORSESHOE TRANSDUCER POSITION FROM ACCELEROMETER

- **1. Highly accurate transducer**
- 2. Provide a precise load value.
- 3. Load cell placed on polished rod between the permanent polished rod clamp and the carrier bar.
- 4. Sensor acquires the acceleration of the polished rod.
- 5. Software calculates velocity and position of the polished rod by integration of the acceleration signal vs. time.

Place 30k HT on Carrier Bar Below Polished Rod Clamp.

The brake or clamps could slip and for safety reasons **NEVER** place hand between carrier bar and polished rod clamp.

50k HORSESHOE TRANSDUCER INCLUDES ACCELEROMETER

SAFE, FAST, CONVENIENT, ACCURATE LOAD & POSITION

Spool & Washers Mounted on Well

- 1. Permanently Install Spool Assembly on the Well.
- 2. Spool fits over the polished rod between the carrier bar and the permanent polished clamp.
- Spool assembly consists of upper washer, lower washer and 5" long (2" OD) steel tube; separate the two washers.

Use Existing Load Cell with Special Accelerometer

- 1. Operator has Load Cells mounted on many wells.
- 2. Replace external string box or position transducer is used to determine position
- 3. Special accelerometer transducer determines position, similar in size to the PRT but containing only the accelerometer function.
- 4. Can be be used with <u>any</u> type of load cell.

Quickly installed onto the polished rod below the carrier bar.

